Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Int J Pharm X ; 7: 100240, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38577618

RESUMO

Bimatoprost (BIM) is a prostaglandin F2α analogs originally approved for the treatment of glaucoma and ocular hypertension. Recent studies have highlighted its potential to boost hair growth. The objective of this investigation is to challenge the potential of spanlastics (SLs) as a surfactant-based vesicular system for promoting the cutaneous delivery of BIM for the management of alopecia. BIM-loaded spanlastics (BIM-SLs), composed of Span as the main vesicle component and Tween as the edge activator, were fabricated by ethanol injection method. The formulated BIM-SLs were optimized by 23 full factorial design. The optimized formula (F1) was characterized for entrapment efficiency, surface charge, vesicle size, and drug release after 12 h (Q12h). The optimized formula (F1) exhibited high drug entrapment efficiency (83.1 ± 2.1%), appropriate zeta potential (-19.9 ± 2.1 mV), Q12h of 71.3 ± 5.3%, and a vesicle size of 364.2 ± 15.8 nm, which favored their cutaneous accumulation. In addition, ex-vivo skin deposition studies revealed that entrapping BIM within spanlastic-based nanogel (BIM-SLG) augmented the dermal deposition of BIM, compared to naïve BIM gel. Furthermore, in vivo studies verified the efficacy of spanlastic vesicles to boost the cutaneous accumulation of BIM compared to naive BIM gel; the AUC0-12h of BIM-SLG was 888.05 ± 72.31 µg/mL.h, which was twice as high as that of naïve BIM gel (AUC0-12h 382.86 ± 41.12 µg/mL.h). Intriguingly, BIM-SLG outperforms both naïve BIM gel and commercial minoxidil formulations in stimulating hair regrowth in an androgenetic alopecia mouse model. Collectively, spanlastic vesicles might be a potential platform for promoting the dermal delivery of BIM in managing alopecia.

2.
Phytother Res ; 38(4): 1951-1970, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38358770

RESUMO

The herb Sophora flavescens displays anti-inflammatory activity and can provide a source of antipsoriatic medications. We aimed to evaluate whether S. flavescens extracts and compounds can relieve psoriasiform inflammation. The ability of flavonoids (maackiain, sophoraflavanone G, leachianone A) and alkaloids (matrine, oxymatrine) isolated from S. flavescens to inhibit production of cytokine/chemokines was examined in keratinocytes and macrophages. Physicochemical properties and skin absorption were determined by in silico molecular modeling and the in vitro permeation test (IVPT) to establish the structure-permeation relationship (SPR). The ethyl acetate extract exhibited higher inhibition of interleukin (IL)-6, IL-8, and CXCL1 production in tumor necrosis factor-α-stimulated keratinocytes compared to the ethanol and water extracts. The flavonoids demonstrated higher cytokine/chemokine inhibition than alkaloids, with the prenylated flavanones (sophoraflavanone G, leachianone A) led to the highest suppression. Flavonoids exerted anti-inflammatory effects via the extracellular signal-regulated kinase, p38, activator protein-1, and nuclear factor-κB signaling pathways. In the IVPT, prenylation of the flavanone skeleton significantly promoted skin absorption from 0.01 to 0.22 nmol/mg (sophoraflavanone G vs. eriodictyol). Further methoxylation of a prenylated flavanone (leachianone A) elevated skin absorption to 2.65 nmol/mg. Topical leachianone A reduced the epidermal thickness in IMQ-treated mice by 47%, and inhibited cutaneous scaling and cytokine/chemokine overexpression at comparable levels to a commercial betamethasone product. Thus, prenylation and methoxylation of S. flavescens flavanones may enable the design of novel antipsoriatic agents.


Assuntos
Alcaloides , Flavanonas , Sophora , Camundongos , Animais , Flavonoides/química , Sophora flavescens , Sophora/química , Flavanonas/farmacologia , Flavanonas/química , Prenilação , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Citocinas , Quimiocinas
3.
Nanoscale Adv ; 6(2): 648-668, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38235090

RESUMO

Polycystic ovarian syndrome (PCOS) is a multi-factorial endocrine disorder affecting women of reproductive age. However, its high prevalence and the unsuccessful translation of conventional modalities have made PCOS a pharmaco-therapeutic challenge. In the present study, we explored bi-formulations (comprising metformin-loaded mucus-penetrating nanoparticles, MTF-MPPs, and myoinositol-loaded mucus-penetrating particles, MI-MPPs) incorporated in a carbomer gel tailored for intravaginal administration. For the development and optimization of the MPPs-gel, a QbD (quality by design) approach was employed, including the initial and final risk assessment, central composite design of experts, and method validation. The optimized MTF-MPPs and MI-MPPs possessed an optimum nanometric particle size (195.0 nm and 178.8 nm, respectively) and a PDI of 0.150 and 0.123, respectively, together with a negligible negative zeta potential (-5.19 mV and -6.19 mV, respectively) through the vaginal mucus. It was observed that the MPPs are small and monodisperse with a neutral surface charge. It was observed that the MPPs-gel formulations released approximately 69.86 ± 4.65% of MTF and 67.14 ± 5.74% of MI within 120 h (5 days), which was observed to be sustained unlike MFT-MI-gel with approximately 94.89 ± 4.17% of MTF and 90.91 ± 15% of MI drugs released within 12 h. The confocal microscopy study of rhodamine-loaded MPPs indicated that they possessed a high fluorescence intensity at a depth of 15 µm, while as the penetration trajectory in the vaginal tissue increased to 35 µm, their intensity was reduced, appearing to be more prominent in the blood vessels. The analyzed data of MPPs-gel suggest that the optimized MPPs-gel formulation has potential to reach the targeted area via the uterovaginal mucosa, which has a wide network of blood vessels. Subsequently, in vivo studies were conducted and the results revealed that the proposed MPPs-gel formulation could regulate the estrous cycle of the reproductive system compared to the conventional formulation. Moreover, the formulation significantly reduced the weight of the ovaries compared to the control and conventional vaginal gel. Biochemical estimation showed improved insulin and sex hormone levels. Thus, the obtained data revealed that the deep penetration and deposition of MTF and MI on the targeted area through intravaginal delivery resulted in better therapeutic effects than the conventional vaginal gel. The obtained results confirmed the amelioration of PCOS upon treatment using the prepared MPPs-gel formulation. According to the relevant evaluation studies, it was concluded that MPPs-gel was retained in the vaginal cavity for systemic effects. Also, the sustained and non-irritating therapeutic effect meets the safety aspects. This work serves as a promising strategy for intravaginal drug delivery.

4.
Acta Biomater ; 174: 331-344, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38061677

RESUMO

There is currently no specific and effective treatment for bacteremia-mediated sepsis. Hence, this study engineered a combinatorial nanosystem containing neutrophil-targeted roflumilast-loaded nanocarriers and non-targeted fusidic acid-loaded nanoparticles to enable the dual mitigation of bacteremia-associated inflammation and methicillin-resistant Staphylococcus aureus (MRSA) infection. The targeted nanoparticles were developed by conjugating anti-lymphocyte antigen 6 complex locus G6D (Ly6G) antibody fragment on the nanoparticulate surface. The particle size and zeta potential of the as-prepared nanosystem were about 200 nm and -25 mV, respectively. The antibody-conjugated nanoparticles showed a three-fold increase in neutrophil internalization compared to the unfunctionalized nanoparticles. As a selective phosphodiesterase (PDE) 4 inhibitor, the roflumilast in the nanocarriers largely inhibited cytokine/chemokine release from the activated neutrophils. The fusidic acid-loaded nanocarriers were vital to eliminate biofilm MRSA colony by 3 log units. The nanoparticles drastically decreased the intracellular bacterial count compared to the free antibiotic. The in vivo mouse bioimaging demonstrated prolonged retention of the nanosystem in the circulation with limited organ distribution and liver metabolism. In the mouse bacteremia model, the multifunctional nanosystem produced a 1‒2 log reduction of MRSA burden in peripheral organs and blood. The functionalized nanosystem arrested the cytokine/chemokine overexpression greater than the unfunctionalized nanocarriers and free drugs. The combinatory nanosystem also extended the median survival time from 50 to 103 h. No toxicity from the nanoformulation was found based on histology and serum biochemistry. Furthermore, our data proved that the active neutrophil targeting by the versatile nanosystem efficiently alleviated MRSA infection and organ dysfunction caused by bacteremia. STATEMENT OF SIGNIFICANCE: Bacteremia-mediated sepsis poses a significant challenge in clinical practice, as there is currently no specific and effective treatment available. In our study, we have developed a novel combinatorial nanosystem to address this issue. Our nanosystem consists of neutrophil-targeted roflumilast-loaded nanocarriers and non-targeted fusidic acid-loaded nanoparticles, enabling the simultaneous mitigation of bacteremia-associated inflammation and MRSA infection. Our nanosystem demonstrated the decreased neutrophil activation, effective inhibition of cytokine release, elimination of MRSA biofilm colonies, and reduced intracellular bacterial counts. In vivo experiments showed prolonged circulation, limited organ distribution, and increased survival rates in a mouse bacteremia model. Importantly, our nanosystem exhibited no toxicity based on comprehensive assessments.


Assuntos
Bacteriemia , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Camundongos , Animais , Neutrófilos , Ácido Fusídico/farmacologia , Ácido Fusídico/uso terapêutico , Infecções Estafilocócicas/complicações , Infecções Estafilocócicas/tratamento farmacológico , Taxa de Sobrevida , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bacteriemia/complicações , Bacteriemia/tratamento farmacológico , Modelos Animais de Doenças , Citocinas/farmacologia , Quimiocinas
5.
Drug Deliv ; 30(1): 2245169, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37585684

RESUMO

Phototherapy is a conventional antipsoriatic approach based on oxygen-relevant generation of oxidative stress to inhibit keratinocyte hyperproliferation. However, this therapy can be restricted due to local hypoxia in psoriatic lesions. The generation of alkyl radicals is oxygen-independent and suppresses hyperproliferation. Herein, we established alkyl radical-based therapy to treat psoriatic hyperplasia. Because alkyl radicals are short-lived compounds, we loaded 2,2'-azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride (AIPH) as a precursor of alkyl radicals into the chitosan nanogels to improve stability. The present study presented a topically applied nanogel that led to a pH-responsive network sensitive to skin pH. This pH responsiveness of the nanogels allowed fast alkyl radical release in the target site. The physicochemical properties of the prepared nanogels were determined through size, zeta potential, scanning electron microscopy, and absorption spectroscopy. The antipsoriatic activity was examined with keratinocyte- and animal-based studies. The nanogels displayed a smooth and spherical morphology with a hydrodynamic diameter of 215 nm. This size was largely increased as the environmental pH increased to 6. The nanogels heated at 44 °C produced alkyl radicals to induce keratinocyte death through the necrosis pathway. Bioimaging demonstrated that topically applied nanogels could deliver alkyl radicals into the epidermis. This targeting was accompanied by the accumulation of free radicals in the epidermis according to the 2',7'-dichlorodihydrofluorescein diacetate assay. The imiquimod-stimulated psoriasiform animal model indicated a remarkable reduction in erythema, scaling, and overexpressed cytokines upon topical treatment of the nanogels. The transepidermal water loss of the psoriasiform skin was inhibited from 51.7 to 27.0 g/m2/h, suggesting barrier function recovery by the nanocarriers. The nanogels lowered hyperplasia by decreasing the epidermal thickness from 212 to 89 µm. The incorporation of 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS) as a pH-sensitive fluorescence dye in the nanogels could be used to diagnose the severity of the psoriasiform plaque due to the stronger fluorescence of HPTS in skin with lower pH (psoriasiform skin pH = 4.4) than in healthy skin (pH = 4.9). It was possible to deliver the prepared nanogels into the epidermis to restrain hyperplasia without causing cutaneous irritation.


Assuntos
Psoríase , Pele , Animais , Nanogéis , Hiperplasia/tratamento farmacológico , Hiperplasia/patologia , Pele/patologia , Psoríase/tratamento farmacológico , Concentração de Íons de Hidrogênio , Oxigênio
6.
Int J Biol Macromol ; 246: 125679, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37406911

RESUMO

In total, nine TPGS-b-PCL copolymers were synthesized employing distinct TPGS analogues (TPGS 2000, 3500, and 5000). In these copolymers, the length of the PCL chain varied according to the TPGS to PCL molecular weight ratio (1:1, 1:2, and 1:3). The formulation optimization was done by optimizing the drug to polymer ratio, encapsulation efficiency, drug loading, micelle diameter, and polydispersity index (PDI). TPGS3500-b-PCL7000 copolymer (TPGS to PCL ratio 1:2) with drug to polymer ratio 1:30 showed the best percentage encapsulation (63.50 ± 0.45 %) and drug loading (2.05 ± 0.07). The optimal micelle (CHR-M) diameter and PDI were determined to be 94.57 ± 13.40 nm and 0.16 ± 0.02, respectively. CHR-M showed slow release when compared with alcoholic solution of chrysin. Approximately 70.70 ± 6.4 % drug was released in 72 h. The CHR-M demonstrated considerably greater absorption in Hep G2 cells, which confirmed the reliability of the micellar carrier. The MTT assay results showed that the IC50 values for CHR-M were much lower after 24 and 48 h when compared to free chrysin. Therefore, CHR-M may be a viable carrier for active chrysin targeting with improved anticancer potential. Also, it could be a better alternative for the currently available treatment of hepatocellular carcinoma.

7.
Biomed Pharmacother ; 165: 115017, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37327588

RESUMO

The emergence of multidrug-resistant bacteria contributes to the necessity of developing novel infection treatment approaches. This study was designed to evaluate the antimicrobial and wound healing activities of platelet-rich plasma (PRP) in combination with ß-lactams (ampicillin and/or oxacillin) for the application on methicillin-resistant Staphylococcus aureus (MRSA)-infected skin. PRP was collected from the peripheral blood of healthy donors. The anti-MRSA activity was tested through a growth inhibition curve, colony-forming unit (CFU), and SYTO 9 assay. The PRP incorporation lowered the minimum inhibitory concentration (MIC) of ampicillin and oxacillin against MRSA. The combination of ß-lactams together with PRP showed a three-log CFU reduction of MRSA. The major components of PRP for eliminating MRSA were found to be the complement system and iron sequestration proteins, according to the proteomic analysis. The adhesive bacterial colony in the microplate was decreased from 2.9 × 107 to 7.3 × 105 CFU after the treatment of cocktails containing ß-lactams and PRP. The cell-based study indicated that keratinocyte proliferation was stimulated by PRP. The in vitro scratch and transwell experiments revealed that PRP improved keratinocyte migration. In the MRSA-infected mouse skin model, PRP appeared to show a synergistic effect for wound area reduction by 39% when combined with ß-lactams. The MRSA burden in the infected area was lessened two-fold after topical administration of the combined ß-lactams and PRP. PRP inhibited macrophage infiltration in the wound site to shorten the inflammatory phase and accelerate the initiation of the proliferative phase. No skin irritation was detected with the topical delivery of this combination. Our findings suggested that ß-lactams plus PRP was applicable to alleviate the problems associated with MRSA via dual antibacterial and regenerative activities.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Plasma Rico em Plaquetas , Infecção dos Ferimentos , Animais , Camundongos , beta-Lactamas/farmacologia , beta-Lactamas/metabolismo , Proteômica , Antibacterianos/uso terapêutico , Infecção dos Ferimentos/tratamento farmacológico , Oxacilina/metabolismo , Oxacilina/farmacologia , Ampicilina/farmacologia , Testes de Sensibilidade Microbiana , Sinergismo Farmacológico
8.
Eur J Pharm Sci ; 186: 106458, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37137418

RESUMO

The present study screened the utility of topically-applied nanoformulations to target the drugs/actives into the skin reservoir with the reduction of possible systemic absorption. The lipid-based nanoformulations selected in this study included solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs), nanoemulsions (NEs), liposomes, and niosomes. We loaded flavanone and retinoic acid (RA) as the penetrants. The prepared nanoformulations were assessed for their average diameter, polydispersity index (PDI), and zeta potential. An in vitro permeation test (IVPT) was utilized to determine the skin delivery into/across pig skin, atopic dermatitis (AD)-like mouse skin, and photoaged mouse skin. We found an increased skin absorption of lipid nanoparticles following the increase of solid lipid percentage in the formulations (SLNs > NLCs > NEs). The use of liposomes even reduced the dermal/transdermal selectivity (S value) to lessen the cutaneous targeting. The niosomes resulted in significantly greater RA deposition and reduced permeation in the Franz cell receptor compared to the other nanoformulations. The S value of the RA delivery via stripped skin was increased by 26-fold in the niosomes compared to the free RA. The dye-labeled niosomes displayed a strong fluorescence in the epidermis and upper dermis through the visualization of fluorescence and confocal microscopies. The cyanoacrylate skin biopsy manifested greater hair follicle uptake of the niosomes compared to the free penetrants by 1.5 to three-fold. The 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assay indicated an increase in antioxidant ability from 55% to 75% after flavanone entrapment in the niosomes. In the activated keratinocytes, the niosomal flavanone could suppress the overexpressed CCL5 to the baseline control because of the facile cell internalization. After the formulation optimization, the niosomes with higher phospholipid amount had a superior effect in delivering penetrants into the skin reservoir, with limited permeation to the receptors.


Assuntos
Lipossomos , Absorção Cutânea , Camundongos , Animais , Suínos , Lipossomos/metabolismo , Pele/metabolismo , Administração Cutânea , Tretinoína , Lipídeos , Portadores de Fármacos/metabolismo
9.
Int Immunopharmacol ; 119: 110202, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37075671

RESUMO

Phytosterols have been reported to exert anti-inflammatory activity. This study aimed to investigate the capacity of campesterol, ß-sitosterol, and stigmasterol on the mitigation of psoriasiform inflammation. We also tried to establish structure-activity and structure-permeation relationships for these plant sterols. To support this study, we first approached the in silico data of the physicochemical properties and the molecular docking of phytosterols with stratum corneum (SC) lipids. The anti-inflammatory activity of the phytosterols was explored in the activated keratinocytes and macrophages. Using the activated keratinocyte model, a significant inhibition of IL-6 and CXCL8 overexpression by phytosterols was detected. A comparable inhibition level was found for the three phytosterols tested. The macrophage-based study showed that the anti-IL-6 and anti-CXCL8 activities of campesterol were greater than those of the other compounds, which indicated that a phytosterol structure without a double bond on C22 and with methyl moiety on C24 was more effective. The conditioned medium of phytosterol-treated macrophages decreased STAT3 phosphorylation in the keratinocytes, suggesting the inhibition of keratinocyte hyperproliferation. ß-sitosterol was the penetrant with the highest pig skin absorption (0.33 nmol/mg), followed by campesterol (0.21 nmol/mg) and stigmasterol (0.16 nmol/mg). The therapeutic index (TI) is a parameter measured by multiplying the cytokine/chemokine suppression percentage with skin absorption for anticipating the anti-inflammatory activity after topical delivery. ß-sitosterol is a potential candidate for treating psoriatic inflammation due to having the greatest TI value. In this study, ß-sitosterol attenuated epidermal hyperplasia and immune cell infiltration in the psoriasis-like mouse model. The psoriasiform epidermis thickness could be reduced from 92.4 to 63.8 µm by the topical use of ß-sitosterol, with a downregulation of IL-6, TNF-α, and CXCL1. The skin tolerance study manifested that the reference drug betamethasone but not ß-sitosterol could generate barrier dysfunction. ß-sitosterol possessed anti-inflammatory activity and facile skin transport, showing the potential for development as an anti-psoriatic agent.


Assuntos
Fitosteróis , Psoríase , Camundongos , Animais , Suínos , Sitosteroides/farmacologia , Sitosteroides/uso terapêutico , Estigmasterol/farmacologia , Estigmasterol/uso terapêutico , Simulação de Acoplamento Molecular , Fitosteróis/uso terapêutico , Psoríase/tratamento farmacológico , Inflamação
11.
Sci Rep ; 13(1): 1313, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36693828

RESUMO

Particle size, shape and morphology can be considered as the most significant functional parameters, their effects on increasing the performance of oral solid dosage formulation are indisputable. Supercritical Carbon dioxide fluid (SCCO2) technology is an effective approach to control the above-mentioned parameters in oral solid dosage formulation. In this study, drug solubility measuring is investigated based on artificial intelligence model using carbon dioxide as a common supercritical solvent, at different pressure and temperature, 120-400 bar, 308-338 K. The results indicate that pressure has a strong effect on drug solubility. In this investigation, Decision Tree (DT), Adaptive Boosted Decision Trees (ADA-DT), and Nu-SVR regression models are used for the first time as a novel model on the available data, which have two inputs, including pressure, X1 = P(bar) and temperature, X2 = T(K). Also, output is Y = solubility. With an R-squared score, DT, ADA-DT, and Nu-SVR showed results of 0.836, 0.921, and 0.813. Also, in terms of MAE, they showed error rates of 4.30E-06, 1.95E-06, and 3.45E-06. Another metric is RMSE, in which DT, ADA-DT, and Nu-SVR showed error rates of 4.96E-06, 2.34E-06, and 5.26E-06, respectively. Due to the analysis outputs, ADA-DT selected as the best and novel model and the find optimal outputs can be shown via vector: (x1 = 309, x2 = 317.39, Y1 = 7.03e-05).


Assuntos
Inteligência Artificial , Dióxido de Carbono , Solubilidade , Solventes
12.
Sci Rep ; 12(1): 18875, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36344531

RESUMO

Computational analysis of drug solubility was carried out using machine learning approach. The solubility of Decitabine as model drug in supercritical CO2 was studied as function of pressure and temperature to assess the feasibility of that for production of nanomedicine to enhance the solubility. The data was collected for solubility optimization of Decitabine at the temperature 308-338 K, and pressure 120-400 bar used as the inputs to the machine learning models. A dataset of 32 data points and two inputs (P and T) have been applied to optimize the solubility. The only output is Y = solubility, which is Decitabine mole fraction solubility in the solvent. The developed models are three models including Kernel Ridge Regression (KRR), Decision tree Regression (DTR), and Gaussian process (GPR), which are used for the first time as a novel model. These models are optimized using their hyper-parameters tuning and then assessed using standard metrics, which shows R2-score, KRR, DTR, and GPR equal to 0.806, 0.891, and 0.998. Also, the MAE metric shows 1.08E-04, 7.40E-05, and 9.73E-06 error rates in the same order. The other metric is MAPE, in which the KRR error rate is 4.64E-01, DTR shows an error rate equal to 1.63E-01, and GPR as the best mode illustrates 5.06E-02. Finally, analysis using the best model (GPR) reveals that increasing both inputs results in an increase in the solubility of Decitabine. The optimal values are (P = 400, T = 3.38E + 02, Y = 1.07E-03).


Assuntos
Aprendizado de Máquina , Solubilidade , Solventes , Decitabina , Simulação por Computador
13.
Molecules ; 27(18)2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36144490

RESUMO

Over the last years, extensive motivation has emerged towards the application of supercritical carbon dioxide (SCCO2) for particle engineering. SCCO2 has great potential for application as a green and eco-friendly technique to reach small crystalline particles with narrow particle size distribution. In this paper, an artificial intelligence (AI) method has been used as an efficient and versatile tool to predict and consequently optimize the solubility of oxaprozin in SCCO2 systems. Three learning methods, including multi-layer perceptron (MLP), Kriging or Gaussian process regression (GPR), and k-nearest neighbors (KNN) are selected to make models on the tiny dataset. The dataset includes 32 data points with two input parameters (temperature and pressure) and one output (solubility). The optimized models were tested with standard metrics. MLP, GPR, and KNN have error rates of 2.079 × 10-8, 2.173 × 10-9, and 1.372 × 10-8, respectively, using MSE metrics. Additionally, in terms of R-squared, they have scores of 0.868, 0.997, and 0.999, respectively. The optimal inputs are the same as the maximum possible values and are paired with a solubility of 1.26 × 10-3 as an output.


Assuntos
Inteligência Artificial , Dióxido de Carbono , Dióxido de Carbono/química , Aprendizado de Máquina , Oxaprozina , Solubilidade
14.
PeerJ ; 10: e13482, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35642201

RESUMO

The objective of the present study was to improve the dissolution rate and aphrodisiac activity of tadalafil by using hydrophilic polymers. Solid dispersions were prepared by solvent evaporation-Rota evaporator using Koliphore 188, Kollidon® VA64, and Kollidon® 30 polymers in a 1:1 ratio. Prepared tadalafil-solid dispersions (SDs) evaluated for yield, drug content, micromeritics properties, physicochemical characterizations, and aphrodisiac activity assessment. The optimized SDs TK188 showed size (2.175 ± 0.24 µm), percentage of content (98.89 ± 1.23%), yield (87.27 ± 3.13%), bulk density (0.496 ± 0.005 g/cm3), true density (0.646 ± 0.003 g/cm3), Carr's index (23.25 ± 0.81), Hausner ratio (1.303 ± 0.003) and angle of repose (<25°). FTIR spectrums revealed tadalafil doesn't chemically interact with used polymers. XRD and DSC analysis represents TK188 SDs were in the amorphous state. Drug release was 97.17 ± 2.43% for TK188, whereas it was 32.76 ± 2.65% for pure drug at the end of 2 h with 2.96-fold increase in dissolution and followed release kinetics of Korsmeyer Peppa's model. MDT and DE were noted to be 17.48 minutes and 84.53%, respectively. Furthermore, TK188 SDs showed relative improvement in the sexual behavior of the male rats. Thus the developed SDs TK188 could be potential tadalafil carriers for the treatment of erectile dysfunction.


Assuntos
Afrodisíacos , Disfunção Erétil , Ratos , Masculino , Animais , Humanos , Polímeros/química , Povidona/química , Tadalafila/química , Disfunção Erétil/tratamento farmacológico , Solubilidade
15.
Gels ; 8(4)2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35448136

RESUMO

Carvedilol (CRV) is a non-selective third generation beta-blocker used to treat hypertension, congestive heart failure and angina pectoris. Oral administration of CRV showed poor bioavailability (25%), which might be ascribed to its extensive first-pass metabolism. Buccal delivery is known to boost drugs bioavailability. The aim of this study is to investigate the efficacy of bilosomes-based mucoadhesive carvedilol nanosponge for enhancing the oral bioavailability of CRV. The bilosomes were prepared, optimized and characterized for particle size, surface morphology, encapsulation efficiency and ex-vivo permeation studies. Then, the optimized formula was incorporated into a carboxymethyl cellulose/hydroxypropyl cellulose (CMC/HPC) composite mixture to obtain buccal nanosponge enriched with CRV bilosomes. The optimized bilosome formula (BLS9), showing minimum vesicle size, maximum entrapment, and highest cumulative in vitro release, exhibited a spherical shape with 217.2 nm in diameter, 87.13% entrapment efficiency, and sustained drug release for up to 24 h. In addition, ex-vivo drug permeation across sheep buccal mucosa revealed enhanced drug permeation with bilosomal formulations, compared to aqueous drug suspension. Consecutively, BLS9 was incorporated in a CMC/HPC gel and lyophilized for 24 h to obtain bilosomal nanosponge to enhance CRV buccal delivery. Morphological analysis of the prepared nanosponge revealed improved swelling with a porosity of 67.58%. The in vivo assessment of rats indicated that CRV-loaded nanosponge efficiently enhanced systolic/diastolic blood pressure, decreased elevated oxidative stress, improved lipid profile and exhibited a potent cardio-protective effect. Collectively, bilosomal nanosponge might represent a plausible nanovehicle for buccal delivery of CRV for effective management of hypertension.

16.
Environ Sci Pollut Res Int ; 29(8): 12043-12053, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34561803

RESUMO

The aim of the study was to evaluate the effects of NO modulators and antioxidant treatments on endocrine (plasma corticosterone), cellular (heat shock protein 70 [HSP-70] and nuclear factor κB [NF-κB]), and oxidative stress markers in repetitively stressed rats. Repetitive (restraint) stress (RS 1hr/day × 21 days) enhanced the levels of cellular and endocrine stress markers in the rat blood and altered pro-oxidant-antioxidant balance differentially in the control and test groups. Exposure to repetitive RS enhanced malondialdehyde (MDA) levels, lowered reduced glutathione (GSH), and superoxide dismutase (SOD) levels as well as nitric oxide (NOx) levels. NO precursor L-arginine and NO synthase inhibitors were found to differentially modulate stress-induced mechanism in altering NF-κB, HSP-70, and corticosterone levels. The antioxidant L-ascorbic acid (L-AA) significantly suppressed RS(×21)-induced elevation of NF-κB and HSP-70 levels, depicting protective effects, as also evidenced by reversal of elevated corticosterone levels. The results suggest that NO modulators and antioxidants differentially influence repetitive stress-induced changes in endocrine and cellular markers, and the complex interaction between NO and cellular markers like HSP70 and NF-κB plays a crucial modulatory role in this phenomenon.


Assuntos
Antioxidantes , Óxido Nítrico , Animais , Antioxidantes/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo , Ratos , Restrição Física , Superóxido Dismutase/metabolismo
17.
Molecules ; 26(23)2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34885909

RESUMO

The combined application of clove oil in a lipid nanocarrier opens a promising avenue for bone and joints therapy. In this study, we successfully developed a tunable controlled-release lipid platform for the efficient delivery of clove oil (CO) for the treatment of rheumatoid arthritis (RA). The ultra-small nanostructured lipid carriers co-loaded with CO (CONCs) were developed through an aqueous titration method followed by microfluidization. The CONCs appeared to be spherical (particle size of 120 nm), stable (zeta potential of -27 mV), and entrapped efficiently (84.5%). In toluene:acetone:glacial acetic acid (90:9:1 percent v/v/v) solvent systems, high-performance thin layer chromatography (HPTLC) analysis revealed the primary components in CO as eugenol (RF = 0.58). The CONCs greatly increased the therapeutic impact of CO in both in vitro and in vivo biological tests, which was further supported by excellent antiarthritic action. The CONC had an antiarthritic activity that was slightly higher than neat CO and slightly lower than standard, according to our data. The improved formulation inhibited serum lysosomal enzymes and proinflammatory cytokines while also improving hind leg function. This study provides a proof of concept to treat RA with a new strategy utilizing essential oils via nanodelivery.


Assuntos
Artrite/tratamento farmacológico , Óleo de Cravo/uso terapêutico , Syzygium , Animais , Óleo de Cravo/administração & dosagem , Óleo de Cravo/química , Óleo de Cravo/farmacocinética , Feminino , Masculino , Ratos , Ratos Wistar , Absorção Cutânea , Syzygium/química
18.
Molecules ; 26(24)2021 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-34946581

RESUMO

Luteolin (LUT) is a natural pharmaceutical compound that is weakly water soluble and has low bioavailability when taken orally. As a result, the goal of this research was to create self-nanoemulsifying drug delivery systems (SNEDDS) for LUT in an attempt to improve its in vitro dissolution and hepatoprotective effects, resulting in increased oral bioavailability. Using the aqueous phase titration approach and the creation of pseudo-ternary phase diagrams with Capryol-PGMC (oil phase), Tween-80 (surfactant), and Transcutol-HP (co-emulsifier), various SNEDDS of LUT were generated. SNEDDS were assessed for droplet size, polydispersity index (PDI), zeta potential (ZP), refractive index (RI), and percent of transmittance (percent T) after undergoing several thermodynamic stability and self-nanoemulsification experiments. When compared to LUT suspension, the developed SNEDDS revealed considerable LUT release from all SNEDDS. Droplet size was 40 nm, PDI was <0.3, ZP was -30.58 mV, RI was 1.40, percent T was >98 percent, and drug release profile was >96 percent in optimized SNEDDS of LUT. For in vivo hepatoprotective testing in rats, optimized SNEDDS was chosen. When compared to LUT suspension, hepatoprotective tests showed that optimized LUT SNEDDS had a substantial hepatoprotective impact. The findings of this investigation suggested that SNEDDS could improve bioflavonoid LUT dissolution rate and therapeutic efficacy.


Assuntos
Sistemas de Liberação de Medicamentos , Fígado/efeitos dos fármacos , Luteolina/farmacologia , Nanopartículas/química , Substâncias Protetoras/farmacologia , Administração Oral , Animais , Tetracloreto de Carbono/farmacologia , Emulsões/administração & dosagem , Emulsões/metabolismo , Emulsões/farmacologia , Fígado/metabolismo , Luteolina/administração & dosagem , Luteolina/metabolismo , Masculino , Nanopartículas/administração & dosagem , Nanopartículas/metabolismo , Tamanho da Partícula , Substâncias Protetoras/administração & dosagem , Substâncias Protetoras/metabolismo , Ratos , Ratos Wistar , Solubilidade , Termodinâmica
19.
Polymers (Basel) ; 13(20)2021 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-34685235

RESUMO

Losartan potassium (LP) is an angiotensin receptor blocker used to treat hypertension. At higher pH, it shows poor aqueous solubility, which leads to poor bioavailability and lowers its therapeutic effectiveness. The main aim of this research was to develop a direct compressed effervescent floating matrix tablet (EFMT) of LP using hydroxyl propyl methylcellulose 90SH 15,000 (HPMC-90SH 15,000), karaya gum (KG), and an effervescent agent, such as sodium bicarbonate (SB). Therefore, an EFMT has been developed to prolong the stomach residence time (GRT) of a drug to several hours and improve its bioavailability in the stomach region. The blended powder was evaluated for pre-compression characteristics, followed by post-compression characteristics, in vitro floating, water uptake studies, and in vitro studies. The optimized formulation of EFMT was investigated for in vivo buoyancy by X-ray imaging and pharmacokinetic studies in Albino rabbits. The results revealed that the parameters of pre- and post-compression were within the USP limits. All tablets showed good floating capabilities (short floating lag time <1 min and floated for >24 h), good swelling characteristics, and controlled release for over 24 h. The Fourier-transform infrared (FTIR) and differential scanning calorimetry (DSC) spectra showed drug-polymer compatibility. The optimized formulation F3 (HPMC-90SH 15,000-KG) exhibited non-Fickian diffusion and showed 100% drug release at the end of 24 h. In addition, with the optimized formulation F3, we observed that the EFMT floated continuously in the rabbit's stomach area; thus, the GRT could be extended to more than 12 h. The pharmacokinetic profiling in Albino rabbits revealed that the relative bioavailability of the optimized LP-EFMT was enhanced compared to an oral solution of LP. We conclude that this a potential method for improving the oral bioavailability of LP to treat hypertension effectively.

20.
Saudi J Biol Sci ; 28(9): 5065-5073, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34466084

RESUMO

In the current study, gefitinib loaded PLGA nanoparticles (GFT-PLGA-NPs) and chitosan coated PLGA nanoparticles (GFT-CS-PLGA-NPs) were synthesized to investigate the role of surface charge of NPs for developing drug delivery system for non-small-cell lung cancer (NSCLC). The developed NPs were evaluated for their size, PDI, zeta potential (ZP), drug entrapment, drug loading, DSC, FTIR, XRD, in vitro release profile, and morphology. The anti-cancer activity of GFT loaded PLGA NPs and GFT loaded CS-PLGA-NPs were examined in human A549 lung cancer cell lines. In vitro release studies of GFT-CS-PLGA-NPs showed more sustained release in comparison to GFT-PLGA-NPs due surface charge attraction of chitosan. In addition, viability of A549 cells decreases significantly with the increasing concentration of GFT-PLGA NPs and GFT-CS-PLGA-NPs when compared to that of pure GFT and blank PLGA NPs. In addition, the microscopic analysis and counting of viable cells also validate the cytotoxicity of the developed NPs. This investigation proved that the developed NPs would be efficient carriers to deliver GFT with improved efficacy against NSCLC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...